Better Noise

" Gradient noise:

= Specify the gradients at integer points (instead of at values):

>
= Interpolation: “Ys
- At position x, calculate yg and yq as values ' R
of the lines through x=0 and x=1 with 0
the previously spec'd (random) gradients
- Interpolate yy and y7 with a blending function, e.g. |
h(X) _ 3X2 . 2X3 0,; _mta
or g: — G515t 108
g(x) = 6x> — 15x* 4 10x> ;

0 S
0 010203 04 05 06 07 08 09 1

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 12

ol
= Advantage of the quintic blending function: second derivative at
x=0 and x=1 is 0 — the entire noise function is C2-continuous
= Example where one can easily see this:
A
-]
'5—‘.
Cubic interpolation Quintic interpolation
G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 13

= Gradient noise in 2D:
= Set gradients at integer grid points
- Gradient = 2D vector, not necessarily with length 1
= Interpolation (as in 1D):
- W.l.o.g., P=(x,y) € [0,1]x[0,1]

- Let the following be the gradients:
goo = gradient at (0,0), goq = gradient at (0, 1),
g1o0 = gradient at (1,0), gq1 = gradient at (1,1)

- Calculate the values z;; of the "gradient ramps" g
at point P:

w=en(y) momar(*,]
00 = 800 y 10 10 y

o [X g x—1
01 = 8o1 y—1 11 — 811 y—1

G. Zachmann Advanced Computer Graphics SS May 2013

)
)

% '\
..

“
e

<n

X

;

Advanced Shader Techniques

14

eeeeee

- Blending of 4 z-values through bilinear interpolation:
Zxo = (1 — q(x))200 + q(x)z10 , za = (1 — q(x))zo1 + q(x)z11

Zy = (1= q(y))z0 + a(y)za

= Analogous in 3D: R)
= Specify gradients on a 3D grid ’ o
= Evaluate 23 = 8 gradient ramps
= Interpolate these with tri-linear interpolation — v-':::::;.?j.'.'.'.'.': I
and the blending function Total LERPs :;: + 1
=7

= And in d-dim. space? — complexity is O(Zd) !

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 15

=
el

eeeeee

W Simplex Noise

= d-dimensionaler simplex: =
combination of d+1 affinely independent points

= Examples:

= 1D simplex = line, 2D simplex = triangle,
3D simpex = tetrahedron

" |n general:
= Points Py, ..., P4 are given

= d-dim. simplex = alldpoints X with
X =P+ Z Siu;

=1
with d
P
Ui:Pi_PO,SiZO,gsigl °
i=0
G. Zachmann Advanced Computer Graphics SS May 2013

Advanced Shader Techniques

16

R

= |n general, the following is true:
= A d-dimensional simplex has d+1 vertices

= With equilateral d-dimensional simplices, one can partition a cube that
was suitably "compressed" along its diagonals

- Such a "compressed" d-dimensional cube contains d! many simplices

= Consequence: with equilateral d-dimensional simplexes, one can
partition d-dimensional space (tessellation)

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 17

= Construction of the noise function over a simplex tessellation
(hence "simplex noise"):

= Determine the simplex in which a point P lies

= Determine all of its corners and the gradients in the corners

= Determine (as before) the value of these "gradient ramps" in P
= Generate a weighted sum of these values

= Choose weighting functions so that the “influence” of a simplex grid
point only extends to the incidental simplexes

L O -
1‘v‘4‘/‘»

VAV, AV

N
A~
J

VAVAVAVA
VAV

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 18

eeeee

g

= A huge pro: has only complexity O(d)

= For details see "Simplex noise demystified" (on the course’s
homepage)

= Comparison between classical value noise and simplex noise:

classical

simplex

3-D 4D

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 19

eeeeee

= 4 noise functions are defined in the GLSL standard:
float noisel (gentype), vec2 noise2 (gentype),

vec3 noise3(gentype), vecd noised (gentype).

= Calling such a noise function:
v=noise2(fFx +t, Fy+t)

= With f, one can control the spatial frequency,
With ¢, one can generate an animation (t="time").

= Analogous for 1D and 3D noise
= Caution: range is [-1,+1]!
= Cons:

= Are not implemented everywhere

= Are sloooo00OOW...

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques

. co =
VR

20

Y

Example: Application of Noise to our Procedural Texture

= Qur procedural brick texture (please ignore the uneven outer torus

contour, that's an artifact from Powerpoint):

The code for this
example is
on the class’s
homepage:
vorlesung_demos/

brick.vert and
brick[4-8].frag

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques

cG
VR

21

eeeeee

J &
Remarks Y

¥ cc =
VR =

= Goal: repeatable noise function
= That is, f(x) always returns the same value for the same x
= Choose fixed gradients at the grid points

= Observation: a few different ones are sufficient

= E.g. for 3D, gradients from this set are sufficient:

z g = (0,1,1), g, = (0,1,-1),
g =(0,-1,1), g3 = (0,-1,-1),
g, = (1,0,1), g5 = (1,0,-1),
g = (-1,0,1), g, = (-1,0,-1),
X gg = (1,1,0), g = (1,-1,0),
g0 = (-1,1,0), g, = (-1,-1,0)

= Integer coordinates of the grid points can be simply hashed—
index into a table of pre-defined gradients

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 22

eeeeee

Light Refraction

= With shaders, one can try approximations of
simple global effects

= Example: light refraction

= What does one need to calculate the refracted
ray?

= Snell's Law: nisinf; = nysin 6,
= Needed: n, d, n1, ny
= Everything is available in the fragment shader
= So, one can calculate t per pixel
= So why is refraction so difficult?

= |n order to calculate the correct cutting point of
the refracted ray, one needs the entire geometry!

G. Zachmann Advanced Computer Graphics SS May 2013

Advanced Shader Techniques 23

eeeeee

= Goal: approximate transparent object with
two planes, which the incoming & refracted
rays intersect

= Step 1: determine the next intersection point
P> = P; + dt
= |dea: approximate d

= To do that, render a depth map of the back-

facing polygons in a previous pass, from the
viewpoint

= Use binary search to find a good approximation
of the depth (ca. 5 iter.)

G. Zachmann Advanced Computer Graphics SS May 2013

Advanced Shader Techniques

24

= On the binary search for finding the

depth between Py and P:

G. Zachmann

Situation: given a ray t, with t, < 0, and
two "bracket" points A(® and B(),
between which the intersection point

must be; and a precomputed depth map
Compute midpoint M(©)

Project midpoint with projection matrix

—> Proi

Use (MP™, MP™) to index the depth map

~

— d
Iif d> Msroj — set A — M0
If d < MP = set B = m©)

Advanced Computer Graphics SS May 2013

t

g(©0)

A©) Viewpoint
@

A

Advanced Shader Techniques

25

eeeee

= Step 2: determine the normal in P;

= To do that, render a normal map of all
back-facing polygons from the viewpoint

= Project P, with respect to the viewpoint
into screen space

= Index the normal map
= Step 3:
= Determine t,

= Index an environment map

G. Zachmann Advanced Computer Graphics SS May 2013

Normal map

Advanced Shader Techniques

<n
0

26

e

= Many open challenges:
= When depth complexity > 2:
- Which normal/which depth value should be stored in the depth/normal map?
= Approximation of distance

= Aliasing

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques

¥ cc =

VR

27

=

Our Method

G. Zachmann

Ray Traced

Advanced Computer Graphics

SS

May 2013

With internal reflection

Advanced Shader Techniques

¥ co
VR =

28

eeeeee

The Geometry Shader

= Situated between vertex shader and

rasterizer

= Essential difference to other shaders:

= Per-primitive processing

= The geometry shader can produce
variable-length output!

= 1 primitive in, k prims out

= |s optional (not necessarily present on

all GPUs)

= Note on the side: stream out

= New, fixed-function

= Divert primitive data to buffers

= Can be transferred back to the OpenGL
prog ("Transform Feedback")

G. Zachmann

Advanced Computer Graphics

SS

May 2013

Input
Assembler

Vertex

Buffer

Index
Buffer

Geometry
Shader

Texture

Setup/
Rasterization

Pixel
Shader

Texture

Buffer

Memory

Texture

Advanced Shader Techniques

29

eeeee

..

<n

e

0

x,y,2)

W)
¥
& A 4 -
attribute—»> | Vertex | . WpRSras > Fragment_>__>
Shader Shader

varying varying
uniform
(x,y,2) i i i %
% %é\ B
AL
: Vertex ; Fragment
attribute—> Rasterizer e —>
Shader I- Shader
varying in varying out
uniform

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 30

eeeee

= The geometry shader's principle
function:
= In general "amplify geometry"

= More precisely: can create or destroy
primitives on the GPU

= Entire primitive as input (optionally with
adjacency)

= Qutputs zero or more primitives

- 1024 scalars out max

= Example application:

= Silhouette extrusion for shadow volumes

G. Zachmann Advanced Computer Graphics SS May 2013

Advanced Shader Techniques

. CG X

VR

31

= Another feature of geometry shaders: can render the same
geometry to multiple targets

= E.g., render to cube map in a single pass:

= Treat cube map as 6-element array '
GS

= Emit primitive multiple times

Render Target A
Array ~

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 32

W Some More Technical Details

= |nput / output:

Points, Lines, Line Strip, Line Loop,,Lines with

Application ' : Ui _ .
generates Adjacency, Line Strip with Adjacency, Triangles,
these Triangle Strip, Triangle Fan, Triangles with

Adjacency, Triangle Strip with Adjacency

Point, Line, Line with Adjacency,
Triangle, Triangle with Adjacency

Driver feeds these
ohe-at-a-time
into the Geometry Shader

Geometry Shader

y

Points, LineStrips,
TriangleStrips

Geometry Shader
generates (almost) as
many of these as it wants

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 33

eeeeee

= |[n general, you must specify the type of the primitives input and
output to and from the geometry shader

= These need not necessarily be the same type

= Input type:

glProgramParameteri (shader prog name,
GL_GEOMETRY INPUT TYPE, int value);

= value = primitive type that this geometry shader will be receiving
= Possible values: GL_POINTS, GL_TRIANGLES, ... (more later)

= Qutput type:

glProgramParameteri (shader prog name,
GL_GEOMETRY OUTPUT TYPE, int value);

= value = primitive type that this geometry shader will output
= Possible values: GL_POINTS, GL_LINE_STRIP, GL_TRIANGLES_STRIP

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 34

eeeeee

€
Y Data Flow of Varying the Principle Varying Variables #ed

and will Write Them
If a Vertex Shader then the Geometry Shader to the Fragment

Writes Variables as: will Read Them as: Shader as:

gl_Position — gl _Positionin[g —* gl Position

gl_TexCoord[] — gl _TexCoordIn[d [] — gl _TexCoord[]

gl_FrontColor — ¢l_FrontColorin[d — gl _FrontColor
gl_BackColor ——— ¢l BackColorinfg —— gl _BackColor
gl_PointSize ____, gl _PointSizelnd —, gl PointSize
gl_Layer —» gl _Layerinf] —» gl _Layer
“varying” “varying in” “varying out”

B gl Verticesin

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 35

fhoen

= |f a geometry shader is part of the shader program, then passing
information from the vertex shader to the fragment shader can
only happen via the geometry shader:

.)
varying vec4 Color;

Color = gl_Color; Primitive As*mbly

Already declared 7 you <7

gl_Position = gl_PositionIn[0];
OColor = Color[0];

G varying in vec4 Color[3];

EmitVertex();
varying out vec4 OColor; Primitive AS\embly
Rasper/ pr
varying vec4 OColor; V

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 36

eeeeee

= Since you may not emit an unbounded number of points from a
geometry shader, you are required to let OpenGL know the
maximum number of points any instance of the shader will emit

= Set this parameter after creating the program, but before linking:

glProgramParameteri (shader prog name,
GL_GEOMETRY VERTICES OUT, int n);

= A few things you might trip over, when you try to write your first
geometry shader:

= |t is an error to attach a geometry shader to a program without
attaching a vertex shader

= |tis an error to use a geometry shader without specifying
GL_GEOMETRY_VERTICES_OUT

= The shader will not compile correctly without the #version and
#extension pragmas

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 37

eeeeee

= The geometry shader generates geometry by repeatedly calling
EmitVertex () and EndPrimitive ()

= Note: there is no BeginPrimitive() routine. It is implied by

= the start of the Geometry Shader, or

= returning from the EndPrimitive () call

G. Zachmann Advanced Computer Graphics SS May 2013

Advanced Shader Techniques 38

7 cG
VR

Bremen

Y

A Very Simple Geometry Shader Program

..

<n

0

#version 120

#extension GL EXT geometry shader4 enable void

main (void)

{
gl Position = gl PositionIn[0] + vec4(0.0, O.
gl FrontColor = vec4(1.0, 0.0, 0.0, 1.0);
EmitVertex () ;
gl Position = gl PositionIn[0] + vec4(0.04, -
gl FrontColor = vec4(0.0, 1.0, 0.0, 1.0);
EmitVertex () ;
gl Position = gl PositionIn[0] + vec4(-0.04,
gl FrontColor = vec4(0.0, 0.0, 1.0, 1.0);
EmitVertex () ;
EndPrimitive () ;

}

04, 0.0, 0.0);

0.04, 0.0, 0.0);

-0.04, 0.0, 0.0);

G. Zachmann Advanced Computer Graphics SS May 2013

Advanced Shader Techniques

39

e

Bremen

U Examples

= Shrinking triangles:

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 40

Bremen

U

Displacement Mapping

= Geometry shader extrudes
prism at each face

= Fragment shader ray-casts
against height field

= Shade or discard pixel

depending on ray test

G. Zachmann Advanced Computer Graphics

SS

May 2013

Advanced Shader Techniques

42

Y Intermezzo: Adjacency Information

= |n addition to the conventional primitives (GL_TRIANGLE et al.), a
few new primitives were introduced with geometry shaders

= The most frequent one: GL_TRIANGLES_WITH_ADJACENCY

Triangles with Adjacency

6N vertices are given

(where N is the number of triangles to draw). 0 \ / 4 N=1
Points 0, 2, and 4 define the triangle. \

Points 1, 3, and 5 tell where adjacent triangles are. _/

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 43

Y

Shells & Fins

= Suppose, we want to generate a
"fluffy", ghostly character like
this

= |dea:
= Render several shells (offset

surfaces) around the original
polygonal geometry

- Can be done easily using the vertex
shader

= Put different textures on each shell

the generate a volumetric,

yet "gaseous" shell

appearance

— . -
-
L
i — ——— ——

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques

&
‘f'f'. CcG

° VR

44

Eg

wam ,rx"
lU’ ;f'. cG :E:
VR =

= Problem at the silhouettes:
= Solution: add "fins" at the
silhouette

= Fin = polygon standing on
the edge between 2
silhouette polygons

= Makes problem much less 8 shells
noticeable +

fins

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 45

= |dea: fins can be generated in the
geometry shader

= How it works:

= All geometry goes through the
geometry shader

= Geometry shader checks whether or
not the polygon has a silhouette
edge:
silhouette < en; >0 A eny, <0 or en; <0 A en, >0
where e = eye vector

= If one edge = silhouette, then the
geometry shader emits a fin polygon,
and the input polygon

= Else, it just emits the input polygon

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques

¥ co
VR =

46

Silhouette Rendering

= Goal:

G. Zachmann

Advanced Computer Graphics

SS

May 2013

Advanced Shader Techniques

49

eeeeee

= Technique: 2-pass rendering

1. Pass: render geometry regularly

2. Pass: switch on geometry shader for silhouette rendering

Switch to green color for all geometry (no lighting)

Render geometry again

Input of geometry shader = triangles

Output = lines

Geometry shader checks, whether triangle contains silhouette edge
If yes — output line

If no — output no geometry

= Geometry shader input = GL_TRIANGLE_WITH_ADJACENCY
output = GL_LINE_STRIP

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques

50

Bremen

Y More Applications of Geometry Shaders

= Hedgehog Plots:

. cc ==

VR =

G. Zachmann Advanced Computer Graphics SS May 2013

Advanced Shader Techniques

52

Bremen

W Shader Trees

G. Zachmann Advanced Computer Graphics

SS

May 2013

Advanced Shader Techniques

..

<n

oo

56

e

Bremen

Y

Resources on Shaders Y

= Real-Time Rendering; 3" edition | Real-Time

Rendering

5d awl-|ead” @ ewweuen

is
L
\\
1|
1]
3
(o}
(1]
=4
]
@
Thi
Edit

= Nvidia GPU Programming Guide:
developer.nvidia.com/object/gpu_programming_guide.html

»
= On the geometry shader in particular: @G

www.opengl.org/registry/specs/ARB/geometry shader4.txt

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 57

Bremen

W The Future of GPUs?

Input Data

Frame Buffer

Pre 1996
Customized
Software
Rendering

Input Data

Transformation
and Lighting

Primitive Setup

Rasterization

Pixel/Fragment
Processing

Frame Buffer
Blend
Frame Buffer

Pre 2001

G. Zachmann Advanced Computer Graphics

SS

Input Data

Frame Buffer
Blend

Frame Buffer

DX10

May 2013

Advanced Shader Techniques

59

Input Data Input Data Input Data

Transformation
Input Data and Lighting

Primitive Setup

Frame Buffer Rasterization

A

Pre 1996 |
Customized Processing
Software

Rendering Frame Buffer
Blend Frame Buffer
Blend

Pixel/Fragment

Frame Buffer Frame Buffer Frame Buffer

Pre 2001 DX10 " No fixed
function?

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 60

Input Data Input Data Input Data

Transformation Shadinc ading
Input Data and Lightinc — c Input Data

Primitive Setup

Frame Buffer Rasterization ‘ A Frame Buffer

Pre 1996 — - Software
Customized Processing Rendering?

Software ¢
Rendering Frame Buffer
Blend .~ Frame Buffer
Blend
Frame Buffer Frame Buffer Frame Buffer

Pre 2001 DX10 No fixed
function?

G. Zachmann Advanced Computer Graphics SS May 2013 Advanced Shader Techniques 61

Bremen

Y

G. Zachmann

Advanced Computer Graphics

SS

May 2013

Advanced Shader Techniques

=

cG
VR

62

